

A133913


Triangle, antidiagonals of an array generated from partial sums of A007001.


3



1, 1, 2, 1, 3, 1, 1, 4, 4, 2, 1, 5, 8, 6, 3, 1, 6, 13, 14, 9, 1, 1, 7, 19, 27, 23, 10, 2, 1, 8, 26, 46, 50, 33, 12, 1, 1, 9, 34, 72, 96, 83, 45, 13, 2, 1, 10, 43, 106, 168, 179, 128, 58, 15, 3, 1, 11, 53, 149, 274, 347, 307, 186, 73, 18, 1, 1, 12, 64, 202, 423, 621, 654, 493, 259, 91
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Row sums = A133914: (1, 3, 5, 11, 23, 44, 89, 177, 355,...). Right border = A007001: (1, 2, 1, 2, 3, 1, 2, 1,...).


LINKS

Table of n, a(n) for n=1..76.


FORMULA

Given A007001: (1, 2, 1, 2, 3, 1, 2, 1,...) as first row of an array, nth row = partial sum sequence of (n1)th row. The Triangle A133913 = the antidiagonals of this array.


EXAMPLE

First few rows of the array are:
1, 2, 1, 2, 3, 1, 2,...
1, 3, 4, 6, 9, 10, 12,...
1, 4, 8, 14, 23, 33, 45,...
1, 5, 13, 27, 50, 83, 128,...
1, 6, 19, 46, 96, 179, 307,...
...
First few rows of the triangle are:
1;
1, 2;
1, 3, 1;
1, 4, 4, 2;
1, 5, 8, 6, 3;
1, 6, 13, 14, 9, 1;
1, 7, 19, 27, 23, 10, 2;
1, 8, 26, 46, 50, 33, 12, 1;
1, 9, 34, 72, 96, 83, 45, 13, 2;
1, 10, 43, 106, 168, 179, 128, 58, 15, 3;
...


CROSSREFS

Cf. A007001, A133912, A133914.
Sequence in context: A198788 A112543 A099478 * A209485 A209344 A294099
Adjacent sequences: A133910 A133911 A133912 * A133914 A133915 A133916


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Sep 28 2007


STATUS

approved



